

Verification of wind turbine tower structural properties

Rémi Corniglion, RISE

Monitoring of Modvion's wooden wind turbine tower

Modular wooden wind turbine towers with a net positive climate impact

Wind turbines are vibration machines

Structural modes of vibration and their damping are critical for aeroelastic stability of wind turbines

RISE – Research Institutes of Sweden

World's tallest wooden wind turbine tower

- Tower Height: 105 meters
- Turbine: V90-2.0MW
- Client: Varberg Energi
- Delivery Date: 2023

GOAL

Verify the modal properties of the wooden wind turbine tower

RI. SE

Operational Modal Analysis

- Goal: extract the structures modal frequencies and associated damping levels
- Natural wind excitation is causing structural vibrations
- 3 days of vibrational data from wind turbine in standstill

Operational Modal Analysis

Operational Modal Analysis (SSI-Cov) is used to extract the structures modes and damping levels from the vibration data

Regular Operational Modal Analysis can be performed to monitor the evolution of the structural modes of the wind turbine

Damping

Outcome

Verification of structural modes frequency compared to design values

Decay tests of torsion oscillations

Real wind turbine

Numerical model

RI. SF

Yaw decay

Identifying damping contributions

Isolating damping contributions with the numerical model

Case	Purpose	Aerodynamics	Blade and tower bending	Torsional damping
1	Identify aerodynamic damping	ON	OFF	OFF
2	Identify torsional damping in a simple case	ON	OFF	ON
3	Identify contribution of blade and tower bending	OFF	ON	OFF
4	Identify interaction between blade/tower bending and aerodynamics	ON	ON	OFF
5	Identify interaction between blade edgewise bending and torsional damping	On	Only blade edge mode	OFF
6	Complete turbine, identify tower structural torsion damping from full system response	ON	ON	ON

Identifying damping contributions

Stiff blades with aero and tower damping [deg/s^] Acc. Torsion t [s] Complete turbine N Torsion Acc. [deg/s^ www...... t [s]

RI. SE

Identifying damping contributions

RI. SE

Conclusion

- Operational Modal Analysis of a real wind turbine enables to verify modal properties of a novel modular wooden tower
- Comparison of a numerical model to fields tests to further test the damping properties of the real wooden wind turbine tower

QUESTIONS?