

Structural responses due to underwater detonations

EBBA CARLSSON GUSTAV BLOMGREN

Agenda

- Project description
- Theory
- Method
 - Experiment
 - Sub-Sea Analysis (SSA)
 - Multiphysics-analysis with SSA
 - Multiphysics-analysis with full detonation
- Results & Discussion
- Conclusions
- Future work

STRUCTURAL RESPONSES DUE TO UNDERWATER DETONATIONS

STRUCTURAL RESPONSES DUE TO UNDERWATER DETONATIONS

Underwater detonation

- Shock wave
- Gas bubble
- Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

$$P(t) = P_0 \cdot e^{-t/\theta} \quad 0 \le t \le \theta$$

- Underwater detonation
 - Shock wave
 - Gas bubble
 - Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

$$R_{ ext{max}} = ext{K6} \cdot (ext{W}^{1/3}/(ext{D} + 9.8))^{1/3}$$
 $T = ext{K5} \cdot (ext{W}^{1/3}/(ext{D} + 9.8)^{5/6})$

Underwater detonation

- Shock wave
- Gas bubble
- Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

- Underwater detonation
 - Shock wave
 - Gas bubble
 - Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

- Underwater detonation
 - Shock wave
 - Gas bubble
 - Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

Caused by:

- Shock wave
- Bubble pulse
- Reflections
- Combinations

- Underwater detonation
 - Shock wave
 - Gas bubble
 - Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

SSA

- No modelling of water domain needed
- Based on theoretical equations

S-ALE

- Modelled water domain
- Modelled detonation
- Computationaly heavy

- Underwater detonation
 - Shock wave
 - Gas bubble
 - Reflections
- Structural responses
 - Plastic deformation
 - Natural frequencies
- Numerical methods
 - Modelling
 - Coupling between solid and fluid

SSA

BEM – Boundary Element Method

S-ALE

FSI – Fluid Structure Interaction

Method

STRUCTURAL RESPONSES DUE TO UNDERWATER DETONATIONS

Project stages

- Modelling in LS-Dyna
- Increased complexity
- Experiments for validation

Experiments

- Three series
- Varied distance to charge
- Varied weight of charge

Experiments

- Three series
- Varied distance to charge
- Varied weight of charge

Experiment	Distance to detonation [m]	Weight for charge	
1:1	2.50	w1	
1:2	2.00	w1	
1:3	1.50	w1	
1:4	1.00	w1	
1:5	0.75	w1	
2:1	0.50	w1	
2:2	0.40	w1	
2:3	0.30	w1	
2:4	0.20	w1	
2:5	0.15	w1	
3:1	1.00	w2	
3:2	1.00	w3	
3:3	1.50	w4	
3:4	1.50	w5	

Experiments

- Three series
- Varied distance to charge
- Varied weight of charge

Experiment	Distance to detonation [m]	Weight for charge		
1:1	2.50	w1		
1:2	2.00	w1		
1:3	1.50	w1		
1:4	1.00	w1		
1:5	0.75	w1		
2:1	0.50	w1		
2:2	0.40	w1		
2:3	0.30	w1		
2:4	0.20	w1		
2:5	0.15	w1		
3:1	1.00	w2		
3:2	1.00	w3		
3:3	1.50	w4		
3:4	1.50	w5		

Experiments - Setup

Experiment – Measuring instruments

Threaded rod

Extensometers

Cable entry

Model of test object

- Used for all simulation methods
- Used for all experiments
- Dimensions:
 - L = 300 mm
 - Ø = 120 mm
 - h = 1.5 mm
- Material
 - Alu 6060
 - Yield stress 140 Mpa
 - Strain at failure 11%

Sub-Sea Analysis (SSA)

- Validation of analytical calculations
- Simulation of experients

Multiphysics analysis with SSA

- Combination of SSA and S-ALE
- Including physics from water

Multiphysics analysis with full detonation event

- Three materials: Explosive, Water and Air
- Ambient BC along domain boundaries
 - Intension to let shock wave travel out of the domain
- Mesh-verification
 - Pressure in the fluid
 - Stress in the cylinder

Multiphysics analysis with full detonation event

- Three materials: Explosive, Water and Air
- Ambient BC along domain boundaries
 - Intension to let shock wave travel out of the domain
- Mesh-verification
 - Pressure in the fluid
 - Stress in the cylinder

Multiphysics analysis with full detonation event

- Three materials: Explosive, Water and Air
- Ambient BC along domain boundaries
 - Intension to let shock wave travel out of the domain
- Mesh-verification
 - Pressure in the fluid
 - Stress in the cylinder

Results & Discussion

STRUCTURAL RESPONSES DUE TO UNDERWATER DETONATIONS

Analytical calculations vs SSA

Pressure study

- Normalized towards experiments
- S-ALE underpredicts pressure
 - Smaller difference for larger explosive charge
- Experiments och Analytical
 - Good aggreement to approx. 30% of Pmax

Distance [m]	Weight	Experiment	Analytical	S-ALE
2	w1	1	0,94	0,25
1,5	w4	1	0,55	0,35
1,35	w1	1	0,80	0,19
0,75	w1	1	0,99	0,13

Case 1:5 – Detonation event

- Distance 0.75 m
- Expected contact with bubble

Case 1:5 – Experiment

Shock wave

- 1st Bubble pulse
- Possible snatch from strings
- 2nd Bubble pulse

Case 1:5 – Comparison

- SSA has a clear bubble pulse effect
 - Oscillations correlates to natural frequencies
- Experiments and SSA has similar magnitude

- S-ALE oscillates
 - Reflections
 - Natural frequencies

Case 1:5 – Comparison

- SSA has a clear bubble pulse
 - Oscillations correlates to natural frequencies
- Experiments and SSA has similar magnitude

- S-ALE oscillates
 - Reflections
 - Natural frequencies

Case 1:5 – S-ALE bubble

- Bubble radius
 - 0.8 m analytical
 - 0.2 m with S-ALE
- No contact with the bubble
- Can be due to the distance to the water surface

Case 2:5 – Experiment

Case 2:5 – Experiment

Case 2:5 – Numerical results

- The bubble collides with the cylinder
 - SSA displaces it 0.1 mm
 - S-ALE displaces it 70 mm

Displacement in y-direction, from detonation point

Conclusions

STRUCTURAL RESPONSES DUE TO UNDERWATERDETONATIONS

Conclusions

- Natural frequencies have a significant impact on the results
- SSA
 - No damping function from the water
 - Only models the load application as analytical functions
 - Only accounts for the first bubble pulse
- S-ALE
 - Difficult to avoid reflections at the boundaries
 - Load transfer to cylinder aggreable with experiment
 - Better pressure resolution can be obtained for larger explosive charge
- Large impact of how detailed the structure is modelled
- Experiments are sensetive to disturbances

Future work

STRUCTURAL RESPONSES DUE TO UNDERWATERDETONATIONS

Future work

- More experiments
 - Larger water domain
 - Stiffer structure
- SSA
 - Validate with upscaled experiments
 - Mass scaling to account for water
 - Combine with S-ALE
- S-ALE
 - Investigate BCs with no reflections
 - Validate with experiments with increased charge load
- Model the test object more accurate

Thanks for listening!

STRUCTURAL RESPONSES DUE TO UNDERWATERDETONATIONS